Subsets

Question

Problem Statement

Given a set of distinct integers, nums, return all possible subsets.

Note: The solution set must not contain duplicate subsets.

For example,
If nums = [1,2,3], a solution is:

[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]

题解

子集类问题类似Combination,以输入数组[1, 2, 3]分析,根据题意,最终返回结果中子集类的元素应该按照升序排列,故首先需要对原数组进行排序。题目的第二点要求是子集不能重复,至此原题即转化为数学中的组合问题。我们首先尝试使用 DFS 进行求解,大致步骤如下:

  1. [1] -> [1, 2] -> [1, 2, 3]
  2. [2] -> [2, 3]
  3. [3]

将上述过程转化为代码即为对数组遍历,每一轮都保存之前的结果并将其依次加入到最终返回结果中。

Iterative

Python

class Solution:
    """
    @param S: The set of numbers.
    @return: A list of lists. See example.
    """
    def subsets(self, S):
        if not S:
            return []
        ret = []
        S.sort()
        n = len(S)
        # 000 -> []
        # 001 -> [1]
        # 010 -> [2]
        # ...
        # 111 -> [1, 2, 3]
        for i in xrange(2**n):
            tmp = []
            for j in xrange(n):
                if i & (1 << j):
                    tmp.append(S[j])
            ret.append(tmp)
        return ret

源码分析

利用类似bit map的原理, 将 0 ~ 2n12^n - 1个数值map到每个index上,如果index数值为1,就将该number加入。比如输入是[1 ,2 ,3], 那么当i = 0时,0也就是000, 那么000 -> []; 当i = 1时, 001 -> [1]; 直到i = 7, 111 -> [1, 2, 3].

Recursive

Python

class Solution:
    # @param {integer[]} nums
    # @return {integer[][]}
    def subsets(self, nums):
        if nums is None:
            return []

        result = []
        nums.sort()
        self.dfs(nums, 0, [], result)
        return result

    def dfs(self, nums, pos, list_temp, ret):
        # append new object with []
        ret.append([] + list_temp)

        for i in xrange(pos, len(nums)):
            list_temp.append(nums[i])
            self.dfs(nums, i + 1, list_temp, ret)
            list_temp.pop()

less code style

class Solution:
    """
    @param S: The set of numbers.
    @return: A list of lists. See example.
    """
    def subsets(self, S):
        ret = []
        self.helper(sorted(S), ret, [])
        return ret

    def helper(self, vals, ret, tmp):
        ret.append(tmp[:])
        for i, val in enumerate(vals):
            self.helper(vals[i + 1:], ret, tmp + [val])

C++

class Solution {
public:
    vector<vector<int>> subsets(vector<int>& nums) {
        vector<vector<int> > result;
        if (nums.empty()) return result;

        sort(nums.begin(), nums.end());
        vector<int> list;
        dfs(nums, 0, list, result);

        return result;
    }

private:
    void dfs(vector<int>& nums, int pos, vector<int> &list,
             vector<vector<int> > &ret) {

        ret.push_back(list);

        for (int i = pos; i < nums.size(); ++i) {
            list.push_back(nums[i]);
            dfs(nums, i + 1, list, ret);
            list.pop_back();
        }
    }
};

Java

public class Solution {
    public List<List<Integer>> subsets(int[] nums) {
        List<List<Integer>> result = new ArrayList<List<Integer>>();
        List<Integer> list = new ArrayList<Integer>();
        if (nums == null || nums.length == 0) {
            return result;
        }

        Arrays.sort(nums);
        dfs(nums, 0, list, result);

        return result;
    }

    private void dfs(int[] nums, int pos, List<Integer> list,
                     List<List<Integer>> ret) {

        // add temp result first
        ret.add(new ArrayList<Integer>(list));

        for (int i = pos; i < nums.length; i++) {
            list.add(nums[i]);
            dfs(nums, i + 1, list, ret);
            list.remove(list.size() - 1);
        }
    }
}

源码分析

Java 和 Python 的代码中在将临时list 添加到最终结果时新生成了对象,(Python 使用[] +), 否则最终返回结果将随着list 的变化而变化。

Notice: backTrack(num, i + 1, list, ret);中的『i + 1』不可误写为『pos + 1』,因为pos用于每次大的循环,i用于内循环,第一次写subsets的时候在这坑了很久... :(

回溯法可用图示和函数运行的堆栈图来理解,强烈建议使用图形和递归的思想分析,以数组[1, 2, 3]进行分析。下图所示为listresult动态变化的过程,箭头向下表示list.addresult.add操作,箭头向上表示list.remove操作。

Subsets运行递归调用图

复杂度分析

对原有数组排序,时间复杂度近似为 O(nlogn)O(n \log n). 状态数为所有可能的组合数 O(2n)O(2^n), 生成每个状态所需的时间复杂度近似为 O(1)O(1), 如[1] -> [1, 2], 故总的时间复杂度近似为 O(2n)O(2^n).

使用了临时空间list保存中间结果,list 最大长度为数组长度,故空间复杂度近似为 O(n)O(n).

Reference

results matching ""

    powered by

    No results matching ""