Minimum Absolute Difference in BST

Question

Problem Statement

Given a binary search tree with non-negative values, find the minimum absolute difference between values of any two nodes.

Example:

**Input:**

   1
    \
     3
    /
   2

**Output:**
1

**Explanation:**
The minimum absolute difference is 1, which is the difference between 2 and 1 (or between 2 and 3).

Note: There are at least two nodes in this BST.

题解

题意为找任意两个节点间绝对值差的最小值,根据二叉搜索树的特性,中序遍历即得有序数组,找出相邻两数的最小差值即为解。

Java - Recursive

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    private int min = Integer.MAX_VALUE;
    private TreeNode prev = null;

    public int getMinimumDifference(TreeNode root) {
        if (root == null) return min;

        getMinimumDifference(root.left);
        if (prev != null) {
            min = Math.min(min, root.val - prev.val);
        }
        prev = root;
        getMinimumDifference(root.right);
        return min;
    }
}

Java - Iterative

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public int getMinimumDifference(TreeNode root) {
        int min = Integer.MAX_VALUE;
        TreeNode prev = null;
        Deque<TreeNode> stack = new ArrayDeque<TreeNode>();

        while (root != null || (!stack.isEmpty())) {
            if (root != null) {
                stack.push(root);
                root = root.left;
            } else {
                root = stack.pop();
                if (prev != null) {
                    min = Math.min(min, root.val - prev.val);
                }
                prev = root;
                root = root.right;
            }
        }

        return min;
    }
}

源码分析

递归的解法中需要特别注意 min 和 prev 的设定,作为参数传入均不太妥当。由于二叉搜索树的特性,求得最小差值时无需判断绝对值。

复杂度分析

递归实现用了隐式栈,迭代实现用了显式栈,最坏情况下栈的大小均为节点总数,平均情况下为树的高度。故平均情况下空间复杂度为 O(logn)O(\log n), 每个节点被访问一次,时间复杂度为 O(n)O(n).

Reference

results matching ""

    powered by

    No results matching ""